

Ballooning mode stability in negative triangularity plasmas

S. Saarelma¹, M.E. Austin², D. Brunetti¹, T. Hender¹, A. Marinoni³, M. Knolker⁴, C. Paz-Soldan⁵, L. Schmitz⁶, P.B. Snyder⁴

¹UKAEA-CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.

²The University of Texas at Austin, Austin, Texas 78712, USA

³Massachusetts Institute of Technology, Cambridge, MA USA

⁴General Atomics, San Diego, CA 92186-5608, USA

⁵Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA

⁶Department of Physics and Astronomy, UCLA, Los Angeles, California 90095-1547, USA

The negative triangularity shape has shown the potential to operate tokamaks with good confinement ($H_{98y,2} > 1.2$) and high normalized pressure ($\beta_N < \sim 2.8$) while staying in L-mode, thus avoiding ELMs that are unacceptable in reactor conditions [1-3]. The analysis of the $n = \infty$ ideal MHD ballooning modes using HELENA and BALOO codes of a pair of DIII-D negative triangularity discharges shows that a small decrease of the top triangularity can have a dramatic effect on the access to 2nd stability for the $n = \infty$ ideal MHD ballooning modes in the pedestal region, and this change coincides exactly with the L-mode plasma being unable to transition to the H-mode, even when the heating power is increased significantly. The discharge with the top triangularity (δ_u) of -0.18 transitions to H-mode at 4MW heating power, while the discharge with $\delta_u = -0.36$ stays in L-mode even at 13MW of heating. When varying numerically the pedestal profiles from the L- to H-mode and analysing the resulting self-consistent equilibria, the $\delta_u = -0.18$ case is stable throughout the transition, while the $\delta_u = -0.36$ case reaches the ballooning stability limit that stops the pedestal pressure gradient from increasing at the halfway point between the L- and H-mode profiles. It is therefore likely that the ballooning mode stability limit is preventing the H-mode access in the $\delta_u = -0.36$ case.

While such an L-mode scenario is very attractive to a conventional tokamak operating at moderate β_N , the degraded ballooning stability in the core makes it possibly unfeasible for a high-beta ($\beta_N > 5$) spherical tokamak (ST) to operate with negative triangularity shape even if the good core confinement could be achieved. The reduced ballooning mode stability strongly restricts the achievable global β_N in such an ST for the triangularities required to keep the pedestal in the L-mode.

- [1] M Kikuchi et al., Nucl. Fusion 59 (2019) 056017
- [2] M E Austin et al. Phys. Rev. Lett. 122 115001 (2019)
- [3] A Marinoni et al., Phys. Plasmas 26, 042515 (2019)

*This work supported by DOE Grant DE-FC02-04ER54698, DE-FG02-95ER54309, DE-FG02-97ER54415 and DE-FG02-08ER54984